Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Recent Adv Inflamm Allergy Drug Discov ; 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1753274

ABSTRACT

BACKGROUND: The characterization of new biomarkers that could help to externally validate the diagnosis of COVID-19 and to optimize treatments is extremely important. Many studies established changes in immune-inflammatory and antibody levels, but few studies measured the soluble receptor for advanced glycation end product (sRAGE), angiotensin-converting enzyme 2 (ACE2), calcium and magnesium in COVID-19. OBJECTIVE: To evaluate serum advanced glycation end-product receptor (sRAGE) and angiotensin converting enzyme (ACE)2 and peripheral oxygen saturation (SpO2) and chest CT scan abnormalities (CCTA) in COVID-19. METHODS: sRAGE, ACE2, interleukin (IL)-6, IL-10, C-reactive protein (CRP), calcium, magnesium, and albumin were measured in 60 COVID-19 patients and 30 healthy controls. RESULTS: COVID-19 is characterized by significantly increased IL-6, CRP, IL-10, sRAGE, ACE2, and lowered SpO2, albumin, magnesium and calcium. COVID-19 with CCTAs showed lower SpO2 and albumin. SpO2 was significantly inversely correlated with IL-6, IL-10, CRP, sRAGE, and ACE2, and positively with albumin, magnesium and calcium. Neural networks showed that a combination of calcium, IL-6, CRP, and sRAGE yielded an accuracy of 100% in detecting COVID-19 patients with calcium being the most important predicter followed by IL-6, and CRP. Patients with positive IgG results showed a significant elevation in the serum level of IL-6, sRAGE, and ACE2 compared to the negatively IgG patient subgroup. CONCLUSION: The results show that immune-inflammatory and RAGE pathways biomarkers may be used as external validating criterion for the diagnosis COVID-19. Those pathways coupled with lowered SpO2, calcium and magnesium are drug targets that may help to reduce the consequences of COVID-19.

2.
J Affect Disord ; 297: 233-245, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1720180

ABSTRACT

BACKGROUND: COVID-19 is associated with neuropsychiatric symptoms including increased depressive, anxiety and chronic fatigue-syndrome (CFS)-like and physiosomatic symptoms. AIMS: To delineate the associations between affective and CFS-like symptoms in COVID-19 and chest computed tomography scan anomalies (CCTAs), oxygen saturation (SpO2), interleukin (IL)-6, IL-10, C-Reactive Protein (CRP), albumin, calcium, magnesium, soluble angiotensin converting enzyme (ACE2) and soluble advanced glycation products (sRAGEs). METHOD: The above biomarkers were assessed in 60 COVID-19 patients and 30 healthy controls who had measurements of the Hamilton Depression (HDRS) and Anxiety (HAM-A) and the Fibromyalgia and Chronic Fatigue (FF) Rating Scales. RESULTS: Partial Least Squares-SEM analysis showed that reliable latent vectors could be extracted from a) key depressive and anxiety and physiosomatic symptoms (the physio-affective or PA-core), b) IL-6, IL-10, CRP, albumin, calcium, and sRAGEs (the immune response core); and c) different CCTAs (including ground glass opacities, consolidation, and crazy paving) and lowered SpO2% (lung lesions). PLS showed that 70.0% of the variance in the PA-core was explained by the regression on the immune response and lung lesions latent vectors. One common "infection-immune-inflammatory (III) core" underpins pneumonia-associated CCTAs, lowered SpO2 and immune activation, and this III core explains 70% of the variance in the PA core, and a relevant part of the variance in melancholia, insomnia, and neurocognitive symptoms. DISCUSSION: Acute SARS-CoV-2 infection is accompanied by lung lesions and lowered SpO2 which may cause activated immune-inflammatory pathways, which mediate the effects of the former on the PA-core and other neuropsychiatric symptoms due to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Anxiety , Depression , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL